William D. Magwood IV

  • William D. Magwood IV

     

     

     

     

    M. William D. Magwood IV est le Directeur Général de l’Agence de l’Energie Nucléaire, AEN, agence de l’OCDE, Organisation  de coopération et de développement économiques, depuis le 1er septembre 2014.


    M. Magwood IV apporte à l'AEN une riche expérience à la fois des aspects réglementaires et du développement de l'énergie nucléaire, y compris au niveau international. Depuis 2010, il était l'un des cinq Commissaires, nommés par le Président des États‑Unis et confirmés par le Sénat, de la Nuclear Regulatory Commission (NRC) américaine. Pendant cette période, il a prôné l'indépendance des autorités de réglementation nucléaire et la nécessité de maintenir une réglementation forte, crédible et techniquement sûre aux États‑Unis et dans tous les pays dotés de programmes nucléaires.


    Avant sa nomination à la NRC, de 2005 à 2010, M. Magwood a dispensé, en qualité d'expert indépendant, des conseils stratégiques et politiques à une clientèle américaine et internationale dans des domaines tels que les politiques énergétiques, environnementales et technologiques. Dans le même temps, il a siégé au sein de divers groupes consultatifs et conseillé des membres du Congrès américain sur un éventail de sujets techniques et stratégiques concernant la recherche nucléaire, l'enseignement et la politique en matière de changement climatique.


    De 1998 à 2005, M. Magwood IV a occupé le poste de Directeur de l'énergie nucléaire au ministère de l'Énergie des États‑Unis. Dans l'exercice de ces fonctions, il a lancé plusieurs initiatives importantes parmi lesquelles le programme US Nuclear Power 2010 et le Forum international Génération IV (GIF). Il a également activement participé aux travaux de l'AEN, notamment en qualité de membre du Bureau du Comité de direction de 1999 à 2003, puis de Président de ce Comité en 2004 et au début de 2005.
    Avant de rejoindre le ministère de l'Énergie, M. Magwood IV a dirigé des programmes de recherche sur la fourniture d'électricité et sur les politiques nucléaires à l'Edison Electric Institute, à Washington, DC. Auparavant, il avait travaillé comme scientifique chez Westinghouse Electric Corporation à Pittsburgh, en Pennsylvanie.


    De nationalité américaine, M. Magwood IV est titulaire d'une licence de physique et d'une licence d'anglais de l'Université Carnegie Mellon ainsi que d'un master d'arts et de lettres de l'Université de Pittsburgh.

  • Sûreté nucléaire


     

    La sûreté nucléaire par Willian D. Magwood IV, Directeur Général - NEA

     

     

     

    What does it mean to improve worldwide nuclear safety today?


    Improving nuclear safety is a continual process that builds on lessons learnt from operating experience and safety research. Those involved with ensuring nuclear safety—operators and regulators—should continually strive to learn new information to enhance the safe design and operation of nuclear facilities.

    An important component that helps improve nuclear safety worldwide is having openness and sharing of nuclear knowledge and experience. The Nuclear Energy Agency (NEA) and other international organisations play a major role in this area. The NEA’s programmes in nuclear safety technology and regulation bring together senior government officials and technical experts from around the world to share best practices and scientific information. This helps achieve a common understanding of the underlying technical issues and the necessary actions to address them. Recent examples of such international cooperation for improved safety include our work in areas such as improving the robustness of electrical power systems, better understanding the hazards posed by extreme external events and strengthening human performance and safety culture.

     

    What are the main safety challenges for 2050?


    One challenge is long-term operation of existing nuclear power plants. Maintaining a high level of safety for plants operating for longer terms requires robust monitoring and maintenance plans to proactively identify and correct any ageing-related issues before they result in more significant challenges. This challenge applies not only to plant structures and equipment necessary for routine operations, but also to equipment intended for use in rare events.

    Another key challenge expected to arise by 2050 will involve development and diversification of future nuclear technologies including Generation IV systems. Safety issues and assessments for the next generation of nuclear reactors will need to address a much wider range of issues, such as those related to different fuel designs, reactor coolants and plant materials. The technical and scientific issues that will need to be addressed are more diverse and sometimes radically different than for current technologies. The Generation IV International Forum, serviced by the NEA, is a co-operative international endeavour that was set up to carry out the research and development needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems.

    A third challenge worth mentioning is maintaining nuclear-safety expertise internationally in the context of nuclear phase-out in some countries with considerable nuclear experience and development of nuclear power in countries with relatively little experience. NEA has a clear role to play here in preserving safety knowledge and expertise and facilitating knowledge transfer to future generations. In addition, it will be essential to maintain and develop strong safety cultures for all professionals involved in the operation and regulation of nuclear power plants.

    Lastly, the maintenance and assurance of a health safety culture for nuclear operators and regulators is a challenge that cross-cuts all aspects of nuclear safety. The human aspects may be weakest link in nuclear safety as we look into the future.

     

    What is the role of the new technologies? Do you have one or two examples please? What are the main lines of research in progress?


    New technologies can serve many roles, such as improving safety as well as increasing efficiency. New technology can be as basic as improved materials that provide greater mechanical resistance or resistance to corrosion. A good example is the steady improvement of alloys and manufacturing techniques for steam-generator tubes in pressurized-water reactors. Improved steam generator tube materials can help reduce the steam generator tube failures to improve safety and can also improve heat transfer to increase operational efficiency.

    There are also fundamental changes in technology related to advanced reactor designs. Two good examples are the sodium-cooled fast-neutron reactor (SFR) and the gas-cooled high-temperature reactor (HTR). Such advanced designs offer safety benefits inherent in their designs. For example, if we consider a loss of reactor core cooling event, the SFR benefits from the large thermal inertia of the primary system (it would take longer before anything serious can happen), while the HTR benefits from passive natural cooling that avoids more serious consequences. Furthermore, the HTR and the SFR use uranium resources more efficiently with enhanced sustainability.

    Developing new technologies also requires new paradigms in our approaches for production and regulation. For example, small modular reactors (SMRs) offer different benefits than large nuclear power plants in terms of enhanced passive safety features and deployment. The mindset for SMRs should shift from the “building” of individual projects to the “manufacturing” of higher volumes, with a strong focus on quality assurance in the manufacturing.

     

Nous utilisons des cookies pour faire fonctionner ce site Internet, améliorer son utilisation et vous proposer des offres et services adaptés à vos centres d'intérêt. Veuillez noter qu'en utilisant ce site, vous consentez à l'utilisation de cookies. Pour toute information sur les cookies notamment comment les gérer, cliquer ici